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FREE VIBRATIONS OF UNIFORM TIMOSHENKO
BEAMS WITH ATTACHMENTS

B. P;

Technical University of Cze� stochowa, Da� browskiego 73, 42-200 Cze� stochowa, Poland

(Received 8 October 1996, and in final form 4 February 1997)

The problem of free transverse vibrations of Timoshenko beams with attachments like
translational and rotational springs, concentrated mass including the moment of inertia,
linear undamped oscillators and additional supports is considered. The frequency equation
for the combined system is derived by means of the Lagrange multiplier formalism. The
exact solution of the free vibration problem of the beam without attachments is taken into
account for the formulation of the free vibration problem of the combined system.
Numerical examples show the separate or coupling influences of the additional elements
on the combined system’s frequencies. The comparison of results obtained by using the
present approach with results of the exact solution indicates a good agreement.
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1. INTRODUCTION

The problem of free vibrations of beams with attachments has been considered by many
authors. Most of their works have presented the solution for the situations where the
beams have been considered according to Bernoulli–Euler beam theory [1–9]. The exact
solutions as well as the approximate ones have been obtained for systems with various
additional elements (elastic supports, rigidly or elastically mounted masses, etc.) and for
different combinations of the beam end conditions. Combined systems consisting of a
uniform or non-uniform beam and different numbers of additional elements have been
considered.

Several authors have studied the problem for situations where the beams have been
treated according to the Timoshenko beam theory [10–17]. These recently published works
concern some of the most frequently existing cases. White and Heppler [10] have reported
the results of free vibration investigations of the beam with rigid bodies attached at its ends.
They have included the effects of the body mass, first moment of mass and moment of
inertia. Rossi et al. [11] have solved analytically the problem of free vibrations of beams
carrying elastically mounted concentrated masses. Three combinations of boundary
conditions: simply supported, simply supported–clamped and clamped at both ends have
been considered. Maurizi and Belles [12] and Abramovich and Hamburger [13] have
investigated cantilever beams with the attached masses. The cantilever beam with a tip
mass and intermediate rotational and translational springs has been investigated by
Abramovich and Hamburger [14].

In references [15–17] vibrations of non-uniform beams have been analyzed. Lee and Lin
[15] have presented the exact solution for the free vibration of a symmetric beam with tip
mass at one end and elastically restrained at the other. An approximate method has been
developed by Matsuda et al. [16] to study the vibration of a tapered beam with constraint
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at any point and carrying a heavy tip body. Farghaly [17] has investigated the natural
frequencies and the critical buckling load coefficients for multi-span beam systems.

In the present work the solution of the free vibration problem of a Timoshenko beam
with additional elements attached is presented. The solution is obtained by using the
Lagrange multiplier formalism. The frequency equation is derived for the combined system
consisting of a uniform Timoshenko beam and additional elements. Some numerical
examples are shown together with other solutions in order to show the accuracy of the
results obtained. Other numerical results are presented to show the influence of the various
parameters on the frequencies of the combined system.

2. FORMULATION

A dynamical system consisting of a uniform Timoshenko beam, rotational and
translational springs, concentrated mass and element with rotary inertia, linear undamped
oscillator and additional supports against the beam translation or rotation is considered
(see Figure 1(a)). The beam without the additional elements is the base system that must
satisfy any arbitrary chosen boundary conditions.

The beam kinetic energy is expressed as (see reference [18])

Tb(t)=
1
2 g

L

0 $1y(x, t)
1t %

2

rA(x) dx+
1
2 g

L

0 $1c(x, t)
1t %

2

rI(x) dx , (1)

where y(x, t) is the total deflection of the beam at a point x, c(x, t) is the angle of rotation
due to bending, rA(x) is the mass per unit length, rI(x) is the mass moment of inertia

Figure 1. A model of the combined dynamical system.
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per unit length about the neutral axis which passes through the center and r is the mass
density.

The beam potential energy is expressed as

Vb(t)=
1
2 g

L

0

EI(x)$1c(x, t)
1x %

2

dx+
1
2 g

L

0

k'GA(x)$1y(x, t)
1x

−c(x, t)%
2

dx , (2)

where E is the modulus of elasticity, I(x) is the area moment of inertia about the neutral
axis, G is the shear modulus, A(x) is the cross-sectional area and k' is a numerical factor
depending on the shape of the cross-section.

Based on the solutions obtained for the Timoshenko beam without any attachments one
can express the total deflection y and rotation c as

y(x, t)= s
n

i=1

Yi(x)ji(t) , c(x, t)= s
n

i=1

Ci(x)ji(t) , (3, 4)

where Yi(x) denotes the ith transverse vibrational mode and Ci(x) the ith rotational
vibrational mode.

Substituting equations (3) and (4) in equations (1) and (2), one obtains

Tb(t)=
1
2

s
n

i=1

Mij� 2i , Vb(t)=
1
2

s
n

i=1

Ki j
2
i , (5, 6)

where

Mi =g
L

0

Y2
i (x)rA(x) dx+g

L

0

C2
i (x)rI(x) dx,

Ki =g
L

0

EI(x)C'2i (x) dx+g
L

0

k'GA(x)[Y'i (x)−Ci(x)]2 dx. (7)

Initially, the beam and the additional elements of the system are considered to be
unconnected (see Figure 1b)), so there is no influence of the additional elements on the
total deflection y and rotation c of the beam. The additional elements are not influenced
by the beam as well as they are not influenced by each other. From equations (5) and (6)
the total kinetic energy of all components is

T=
1
2

s
n

i=1

Mij� 2i +
1
2

mż2
2 +

1
2
Mż2 +

1
2

J8̇2
4 , (8)

and the total potential energy is

V=
1
2

s
n

i=1

Kij
2
i +

1
2

Kz2
1 +

1
2

C82
3 +

1
2

KM(z− z5)2, (9)

where K and KM are the linear translational spring stiffnesses, m and M are the masses,
C is the linear rotational spring stiffness, J is the rotary inertia and z, z1, z2, z5, 83 and
84 are the co-ordinates of the additional elements as shown in Figure 1(b).
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T 1

Frequency coefficients Vi =viL2 zrA/EI of the simply supported Timoshenko beam
carrying elastically mounted concentrated mass (x5/L=2/3)

Model aKM aM V1 V2 V3 V4

Exact solution [11] 1 0·2 2·21494 9·42271 33·5706 101.390
Seven terms 2·21506 9·49272 33·5706 101·390
Fifteen terms 2·21500 9·49271 33·5706 101·390
Exact solution [11] 1 0·99093 9·48904 33·5706 101·390
Seven terms 0.99099 9.48905 33.5706 101.390
Fifteen terms 0·99096 9·48905 33·5706 101·390
Exact solution [11] 3 0·57215 5·48846 33·5705 101·390
Seven terms 0·57218 9·48847 33·5706 101·390
Fifteen terms 0·57217 9·48847 33·5705 101·390

Exact solution [11] 100 0·2 8·10814 23·0376 37·1183 102·088
Seven terms 8·10997 23·1258 37·1815 102·098
Fifteen terms 8·10904 23·0810 37·1491 102·093
Exact solution [11] 1 5·28137 16·3251 35·9766 102·061
Seven terms 5·28801 16·3836 36·0092 102·070
Fifteen terms 5·28465 16·3539 35·9925 102·065
Exact solution [11] 3 3·30383 15·1237 35·8436 102·057
Seven terms 3·30972 15·1712 35·8731 102·065
Fifteen terms 3·30674 15·1471 35·8580 102·061

Exact solution [11] 1015 0·2 8·25154 30·3093 91·1007 128·787
Seven terms 8·25310 30·3564 92·3888 130·504
Fifteen terms 8·25231 30·3327 91·7431 129·624
Exact solution [11] 1 5·88427 26·6447 81·1391 123·906
Seven terms 5·89176 26·8021 84·4594 126·864
Fifteen terms 5·88797 26·7226 82·7824 125·329
Exact solution [11] 3 3·91991 25·1348 77·9003 122·799
Seven terms 3·92886 25·3364 81·8107 125·991
Fifteen terms 3·92432 25·2344 79·8179 124·322

The additional elements are connected to the beam at points xk (k=1, 2, . . . , 7) as
shown in Figure 1(a) by requiring that

f1 0 y(x1)− z1 =0, f2 0 y(x2)− z2 =0, f3 0c(x3)−83 =0,

f4 0c(x4)−84 =0, f5 0 y(x5)− z5 =0, f6 0 y(x6)=0, f7 0c(x7)=0. (10)

The Lagrangian for the combined system may be written as

L=T−V+ s
R

r=1

lrfr , (11)

T 2

Frequency coefficients Vi =viL2 zrA/EI of the cantilever Timoshenko beam with a tip mass

Model am aJ V1 V2 V3 V4 V5

Exact solution [20] 1·0 0·125 1·40 5·73 23·64 58·41 106·54
Seven terms – – 1·40 6·27 26·92 66·08 118·73
Fifteen terms – – 1·40 5·83 24·52 60·48 108·83
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Figure 2. Frequency parameter values bnL versus co-ordinate x1/L of the connection point between the beam
and the translational spring· aK values: (a) 1; (b) 10; (c) 100; (d) 1000. (See text for key.)

where lr is the Lagrange multiplier and R is the number of the attachments in the system.
Using the Lagrange equations one obtains

Mij� i +Kiji − s
R

r=1

lrbir =0 i=1, 2, . . . , n,

Kz1 + l1 =0, mz̈2 + l2 =0, C83 + l3 =0,

J8̈4 + l4 =0, −KM(z− z5)+ l5 =0, Mz̈+KM(z− z5)=0, (12)

where

bir =6Yi(xr)
Ci(xr)

for r=1, 2, 5, 6
for r=3, 4, 7 7 (13)
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Assuming simple harmonic motion,

ji =Ai ejvt, i=1, 2, . . . , n, zk =Zk ejvt, k=1, 2, 5,

8k =Fk ejvt, k=3, 4, z=Z ejvt, lr =Lr ejvt, r=1, 2, . . . R,

one can solve the system of equations (12) for the Ai , Zk , Fk and Z in terms of the Lr’s:

Ai =0 s
R

r=1

Lrbir1>(Ki −v2Mi), Z1 =−L1/K,

Z2 =L2/(mv2), F3 =−L3/C, F4 =L4/(Jv2).

Z5 =L5$−1/KM +1/(Mv2)%, Z=L5/(Mv2). (15)

Figure 3. Frequency parameter values bnL versus co-ordinate x2/L of the connection point between the beam
and the concentrated mass· am values: (a) 0·2; (b) 0·5; (c) 1; (d) 3.
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Figure 4. Frequency parameter values bnL versus co-ordinate x3/L of the connection point between the beam
and the rotational spring. aC values: (a) 1; (b) 10; (c) 100; (d) 1000.

Substitution of equations (15) into equations (10) gives

s
R

r=1

(Ckr + dkrok)Lr =0, k=1, 2, . . . , R, (16)

where dkr is the Kronecker delta, and

Ckr = s
n

i=1

bikbir

Ki −v2Mi
, (17)

o1 =1/K, o2 =−1/(mv2), o3 =1/C,

o4 =−1/(Jv2), o5 =1/KM −1/(Mv2), o6 =0, o7 =0. (18)

For non-trivial solutions the determinant of the coefficients of the Lr’s in the system of
equations (16) must be zero, e.g.,

=Ckr + dkrok ==0, (19)
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which is an eigenvalue equation for v2. In this equation, similarly as in reference [8], the
coefficients Ckr characterize the base system and the coefficients ok the additional elements
attached to the base system. A number of attachments corresponds to an increase in the
size of the matrix.

3. NUMERICAL RESULTS

In order to check the reliability and accuracy of the numerical solutions obtained by
the present method, a uniform simply supported beam carrying an elastically mounted
concentrated mass was taken as a first example. The same system has been investigated
in reference [11]. For the system the numerical values of the frequency coefficients
Vi =viL2 zrA/EI (i=1 · · · 4) are present in Table 1. The parameters presented are
defined as aM =M/rAL, aKM =KML3/EI. For all situations considered n=0·3, k'=5/6,
zI/A/L=0·05 and the dimensionless distance to the left end of the beam x5/L=2/3. The
Timoshenko beam without additional elements according to the theory taken into account
in reference [11] was used as the base system for the present calculations. The second
example, a comparison between the present results and those presented in reference [20],
is shown in Table 2. The frequency coefficients Vi(i=1 · · · 5) have been obtained for the

Figure 5. Frequency parameter values bnL versus co-ordinate x4/L of the connection point between the beam
and the element with rotary inertia. aJ values: (a) 0·01; (b) 0·1; (c) 0·5; (d) 1·0.
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Figure 6. Frequency parameter values bnL versus co-ordinate x5/L of the connection point between the beam
and the linear undamped oscillator. aM, aKM values: (a) 0·2, 100; (b) 0·2, 1000; (c) 0·5, 100; (d) 0·5, 1000.

cantilever Timoshenko beam with a tip mass. The system parameters are defined
as am =m/rAL, aJ = J/rAL3 and zI/A/L=0·02, zEI/k'AGL2 =0·04. The numerical
results obtained by the present method show good accuracy when compared with the
results in references [11] and [20].

For the calculations presented graphically, the uniform simply supported beam
according to the theory presented by Abramovich and Elishakoff [19] has been taken as
the base system. For all the situations considered n=0·3 and k'=5/6. The results are
obtained by taking into account fifteen terms in calculation of the coefficients Ckr for
various non-dimensional values of aK =KL3/EI, am , aC =CL/EI, aJ , aM and aKM .

Values of the frequency parameters bnL(b4
n = rAv2

n /EI) presented in Figures 2–6 show
the separate influences of the additional elements on the lower frequencies vn (n=1 · · · 3
or n=1 · · · 4) of the combined system as functions of the element’s locations xi/L
(i=1, 2, 3, 4 or 5). Otherwise, the coupling influences of the additional elements for chosen
values of aK =100, am =0·5, aC =100, aJ =0·1, aM =0·2 and aKM =100 on the combined
system’s frequencies are shown in Figure 7. On these figures the dashed lines represent the
values obtained for zI/A/L=0·001 (this corresponds to the vibrating Bernoulli–Euler
beam case) and the solid lines represent the values for zI/A/L=0·1. Additionally, the
appearance of additional frequency for the system with an undamped oscillator is marked
by dots on the proper lines.
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Figure 7. Frequency parameter values bnL versus co-ordinate xi/L (i=1, 2, 3 or 5) of the connection point
for the combined system. (a) x2 = x4 =0·4, x3 =0·6, x5 =0·8; (b) x1 =0·2, x3 =0·6, x4 = x2, x5 =0·8; (c) x1 =0·2,
x2 = x4 =0·4, x5 =0·8; (d) x1 =0·2, x2 = x4 =0·4, x3 =0·6.

The figures presented show that the change in the natural frequency of the combined
system depends not only on the characteristic parameter value of the additional element
but also on its position along the base system. It could be interesting that the same elements
placed along the beam in a different way may cause quite different changes in the natural
frequencies of the combined system (compare Figure 7(a) or 7(d) with Figure 7(b) or 7(c)).
Additionally, comparing the coupling influences of the additional elements on the natural
frequencies of the combined system shown by Figure 7 with Figures 2(c), 3(b), 4(c), 5(b)
and 6(a) showing the separate influences of the same elements on the natural frequencies,
one can notice quite different behaviours of the system.

CONCLUSION

Equation (19) seems to be especially useful in cases of calculating the frequencies of
combined systems that consist of many miscellaneous elements. There is a possibility to
replace, in an easy way, the description of the base system by another one according to
any arbitrary chosen beam theory. Only the form of the Ckr must be properly changed in
the frequency equation. The additional elements can also be easily introduced into the
description of the combined system. The proper ok must be used to form the frequency
equation.
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Using the exact solution of a free vibration problem for the description of the base
system has a fundamental influence on the accuracy of the vibration analysis of the
combined system. However, the next problem, which has to be properly solved, is the
number of terms needed in the calculation of the Ckr . It depends on the convergence rate
but also it is important to notice that according to the number of eigenvalues of equation
(19) to be calculated, one has to choose an adequate number of terms (this means the
number of vibrational modes of the base system). At least the number of terms must be
such that the largest calculated eigenvalue must be smaller than the natural frequency of
the base system for the last vibrational mode used for calculation of the Ckr .
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